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Abstract:

Forty years ago Jenike and Johanson developedldhenb-flow equations used to
predict stability of bulk solid structures in sil@md hoppers. These equations were
developed into a theory that has been used to mgsigcess equipment to handle
cohesive materials. The basis of the theory isn#tihg stress state analysis of a bulk
material forming a cylindrical pipe (rathole) ar@uar an arch across the hopper outlet.
Reliable process operation requires that thesecotesive obstructions be avoided to
achieve proper flow of bulk materials through pssequipment. Today, industry uses a
variety of flow aid devices to overcome these sdliw structures. One such device is
aeration pads which are used to maintain fluidiratof fine powders and decrease
cohesive behavior of bulk materials. Alternatively blasters can inject a given quantity
of gas into the bulk material creating large transigas pressure gradients that may
destroy these cohesive structures in process egumipmit is important to note that air
blasters may destroy cohesive structures providey tare placed in close enough
proximity to the stable rathole and with sufficidrequency along the axis of the bin or
around the bin perimeter. Although these aeragohniques work, a full understanding
of the reason is lacking. Currently, both the pfaent and required number of these
flow aid devices are based on practical experiemzk not sound theoretical principles.
This paper addresses this knowledge void by adtiaggas pressure gradient terms to
the rathole stability analysis performed by Jenik®js extending the flow-no-flow
rathole analysis to aerated conditions.
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1 Introduction

Processing and handling of fine materials is oftéficult. These materials sometimes
behave as cohesive masses. However, the addifi@ir often creates a condition

wherein bulk materials exhibit less cohesive tendeEn One example of using aeration
to overcome cohesive flow problems is the usemgpails in flat-bottom ash silos to keep
material in a flowable condition. Standard rulésthumb suggest that a minimum of
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15% of the silo bottom should be covered with ad$ to maintain ash in a flowable
state. Air flow should be used during filling anthintained during storage. Since a
sound theory of cohesive aerated behavior does exwdt, current bulk solids
practitioners’ err on the side of safety and oftecommend that the entire bottom be
fluidized with the hope that more aeration will pide some safety margin for design.
The placement of these pads is more art than sciand the amount of air injected is
empirical and based on past experience. If trectign system fails, the material within
the silo looses entrained gas and cohesive ratlreldt. The relationship between
rathole stability and degree of aeration is notlwederstood. This paper addresses a
theoretical approach for stable rathole formatioraerated hoppers and bins. It is an
extension of the critical rathole stability cri@rnitially proposed by Jenike [1].

Two conditions that must be satisfied for troubideef process operations using powder
materials are that the outlet must be large endogivercome cohesive arching of bulk
materials and that the active flow channel mustldrger than the critical rathole
dimension. The Jenike arching criteria equatidijdZ] are often used to compute the
arching tendency. Alternatively, the arching indapproach [3] is used to compute
critical arching dimensions. However, reliablewlof bulk material from process
equipment also requires that the induced flow cbkhiwe large enough to prevent the
formation of stable ratholes. Jenike also devealopdimiting stress state analysis for
prediction of critical rathole diameters in funrilgiw bins. This method has been used
with moderate success over the last 40 years taid®#a conservative estimate of the
critical rathole diameter. However it does have sdimitations. This paper attempts to
address one of these limitations.

Both the arching and rathole conditions must beanrae to assure reliable flow. This
paper focuses on only the rathole tendency of polkders and deals directly with the
influence of aeration on the ability of a powdertenal to form a stable rathole. It will
leave the formation of arches in aerated matesiabime future work. It should be noted
that, quite often, in funnel flow bins the criticathole dimension is the controlling factor
in successful handling system operation. The tatflow-no-flow criteria states that the
active flow channel induced in the material mustdveater than the critical rathole
dimension for reliable flow to occur. The questithen arises as to how this critical
diameter changes during powder aeration. Two thiagg required to determine the
effect of aeration on cohesive flow obstructio®e relationship between aeration and
cohesive flow properties must be established amdsthbility of cohesive structures
under aeration conditions must be understood.

Recent work by Barletta [4], Johanson and Barlghfa and Kline et. al. [6] makes
measurement of unconfined yield strength as a ilmmabf aeration possible. These
aerated flow property measurements can be usecdacpcritical rathole dimensions for
aerated process equipment. Their work suggests th a relationship between aeration
and unconfined yield strength. However, this dffdoes not become a dominant issue
until the gas pressure gradient acting in the povageroaches the weight density of the
bulk powder.
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From a theoretical point of view Hill and Cox [7/ayzed the limiting stability rathole

equations but did not include gas pressure terifisere is limited discussion in their

paper about the validity of their new critical ralgn dimension predictions and they
neglected to add the gas pressure gradient teiience, their analysis can not handle
aerated materials. The following paper addresées rathole stability in aerated

conditions and presents an analysis similar todhe proposed by Jenike, except it
includes gas pressure gradient terms.

2. Derivation of the critical rathole equations
The rathole derivation as defined by Jenike isifical slope stability calculation and
assumes a perfectly plastic limit analysis. Thevegoing equation is called the

equilibrium equation and is simply the equationnaftion with the acceleration terms
omitted (see Eq. 1).

O =yg-0P (2)

This results in the following vector component ggues when expressed in cylindrical
coordinates see Figure 1.
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Figure 1. Definition of stress components
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Normal stress in thé-direction is assumed to equal the major principess in
accordance with the Har Von Karman hypothesis, wistates that the hoop stress in
bulk material is equal to either the major or miqoincipal stress. This assumption
implies that the shear stresggsandtg, equal zero. The critical rathole dimension for a
given piece of process equipment should depenth@isttength evaluated at the greatest
solids contact stress in the equipment. Jansgean@yzed the stresses in cylindrical
silos and found an asymptotic relationship for 8teess as a function of the axial
coordinate. In a silo, the largest solids stressus far below the top material surface.
At this location, the Janssen stress profile predus condition where the normal stress
0, is constant with bed depth. Hence, the teiviis,/Mz and MT1,,//Mz equal zero.
These assumptions result in the simplified Eq.dl B&g. 5.

1 f(r fo,)_&:_aP

r or r or @)
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These equations are transformed using the scalkblaproposed in the original rathole
analysis. This transformation relates the radadifon to a new variablg as given by
Eq. 6 and Figure. 2.
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Figure 2.  Rathole schematic
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The new rathole stability equations become thevalg:

do, L 9. 70, __oP_ D,
dn 20 or 4ARpY?
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They are similar to the equations originally dedvey Jenike, but include gas pressure
gradient terms. Eg. 8 can be integrated direstipject to the boundary condition of zero
shear stress at the rathole surface and nearlyasingas pressure gradient in the axial
direction, to yield Eq. 9 describing the shearsstras a function of radial position away
from the rathole surface.

r. =50y, -2 |, 872 ®
z n

Eq. 7 and Eg. 8 can not be solved directly, sifee number of unknown variables
exceeds the number of vector component equatidnsonstitutive equation relating the
normal stresse®y and o; is required in order to provide closure to thistegys of
equations.

The concept of a perfect plastic material provittesnecessary closure equations. When
stress levels reach a critical value, yield wiltoc The perfectly plastic assumption uses
the stress state at the point of yield as the sts¢aste for all plastic flow conditions.
Obviously, this only applies to the condition ofcipient flow or yield. Such an
assumption can not hope to predict flow behaviotwben the incipient flow and
continual deformation conditions. Consequentlg, riiodel derived from these equations
may predict the incipient failure of a rathole, bull not give any information describing
the flow after initiation. This limitation of théheory is acceptable for this rathole
stability analysis since the goal of this workaspredict the incipient failure of a rathole.
The yield locus then becomes the constitutive egoatequired for closure of the
equation of motion. The yield locus is the collentiof shear stres@) normal stress
points (o) that describe incipient failure of a bulk matergibjected to a prescribed
compaction stress. Figure 3 shows a typical yietdis. The bold line represents the
collection of all stress states that will resultyield of the bulk material. This line
terminates at a stress condition given by the &rlywhr circle. All failure conditions on
the yield locus arise from subjecting the mateiwahe compaction stress state described
by this termination Mohr circle and then shearihg preconditioned bulk material at a
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lower stress state. There is an unique yield Idougach compaction stress state. A
linear approximation to this yield locus providée tconstitutive equation required for

closure of Eqs. 7 and 8. This relationship alldiws stress tensor components to be
expressed as a function of the mean stress. als@sa function of the direction between

the major principal stress and coordinate axis.

O-Z ! TI’Z
20
fc .
H
| 0] 0, ’Trz
Figure 3. Definition of limiting stress state forathole analysis

This definition is identical to the limiting statenstitutive equation used by Jenike in his
original rathole analysis. It is important to nakat the average stress defined in this
figure is measured from the apex of the yield loand not from the origin. This results
in Egs. 10 through 13 for the stress equations.

o = o M-sin(@) tos@ ) + < @ ~1) (10)

2 sin(@)
0, =0 [{1+sin(p) [tos [)) +E M (12)
2 sin(p)
r,, = o [{sin(g) 3in(2w)) (12)
o, =ol{1+sin(@)) +EM (13)
2 sin(@)

Eq. 9 can be substituted back into Eq. 8 to yielelationship between andt.

or +1
rz - o G ,7 (14)
on ntn-1)
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Eqg. 14 can then be combined with the Mohr stresddyconditions to provide a
relationship between the mean str@sisand principal stress direction angte).

1BOL osQa)B(L_ (n+1 _o (15)
o dn sinw) dn 20Uy -

Eq. 15 provides a means of relating mean stretigetprincipal stress direction. It arises
from the solution of the axial equation of motionbgct to the simple boundary
conditions and assumptions outlined above. The&lrabmponent of the equation of
motion can also be expressed as a function of nst@ss(c) and principal stress
direction(w). This can be done by substituting Egs. 10 througmBEq. 7 to yield Eq.
16.

2w 8in(y) E‘sln(Za))EF—+Sln((0) EOSQW)[F* 1D1+COSQw) ?3': ATH?
E‘Bln(w) . o BN (16)
oP . D, oP
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The right side of Eq. 16 can be modified by usimg integrated shear stress Eq. 9 and the
Mobhr circle definition for the shear stress in B§. This yields Eq. 17 and eliminates
the mean stress term from the right side of Eq. This allows complete separation of
the mean stress and principle stress directiornvatéres and leads to Eq. 18, which
describes the change of principle stress diredfignwith respect to the dimensionless
radial coordinatén).

d_a _ sin(2w) E(—/] -1+ 2I[nlsin(g) [cosRa) —sin(g) + 2[n [ Alsin(2a) [sin(g))

: (18)
dn 4 n tn —1) Usin(g) - cosQw))
oP
__ 0
A= ap—r (19)
——-viy,
0z

This differential equation must be bounded withue limits of integration to produce
physically realizable solutions. Therefore, anlgsia of the extreme points of this
equation will yield limits on the principal stredgection angle. The denominator can
become unbounded if gip equals cokw). This results in Eq. 20 describing the
maximum limit of principal stress direction angle
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The numerator must also vanish at this valuesdd maintain a bounded solution. This
yields a relationship between the dimensionlessrdinate (), dimensionless gas
pressure gradient term (A), andnternal friction angld@) (Eqg. 21). The dimensionless

coordinatenmax is the largest possible radial position that caate a plastic stress field
given a rathole diameter of,D

1
2[ALtosE) [3in(p)
1+sin(p)

,7max = (2 l)

208in(p) -1+
The maximum radius of the plastic field is thenegiby Eq. 22.

r= % m. 2 (22)

Now at the surface of the ratholgapproaches Xp approaches 0, armh approaches the
unconfined yield strength. This implies the following relationship betweercanfined
yield strengthft) and average stress leye).

2 $in(g) = f, (23)

However, from the solution of the shear stress diffgal equation average stress can be
related to the rathole diametery D

oP
. ymz _:| |:Do
o Bin(g) 2N - 1{ 0z (24)
n-1 4 i

Eq. 23 and Eq. 24 can be combined to yield a oelakiip between the rathole diameter
and the direction of major principal stress nearrtithole surface (Eq. 25).

in@aw) n''?

n-1 oP

D, =lim| 20fc (2
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(25)

L’Hospital rule must be used to evaluate this ljmassulting in the following equation for
the rathole diameter.
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It is obvious from this equation that the derivatnf the major principal stress direction,
with respect to the dimensionless radial coordieatuated at the surface of the rathole
(n=1), is required to determine a maximum limit to tr@ical rathole diameter. The
G(@A) term defined above is four times the derivativehad principal stress direction
with respect to the dimensionless radial coordirfgde It is similar to the Gp) term
derived by Jenike, but includes gas pressure grade¥ms. This derivative can be
obtained by integrating Eg. 18 subject to the baupdcondition N=Nmax at
w=174 — @2. Because of the complexity of the differential equmatintegration must be
done numerically. The integration proceeds baclwdrom the boundary condition at
Nmax and terminates aj=1. The derivative of the principal stress directiorglan(w)
with respect to dimensionless radial coordin@i¢ evaluated atn=1is then used to
compute the critical rathole diameter. As a fapproximation, gas pressure gradient
terms are assumed constant. This is not strictyy and there will be some variation with
both radial and axial position in the bin. A maecurate solution should involve the
combined numerical solution of the limiting rathelguations along with the equations of
motion describing gas flow through powder. Howewbe analysis provided in this
paper can provide a first approximation to rathsibbility in aerated process equipment.
Figure 4 shows a typical solution to the differahéquation.
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Figure 4.  Typical solution for aerated ratholeguation
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This integration can be repeated for various vabfe@\) and internal angle of friction
() resulting in a new relationship for th&(@A) function that includes gas pressure
gradient terms (Figures 5 and 6). It is importanbote that the radial component of the
gas pressure gradient is responsible for rathoktat@éization. The larger this gas
pressure gradient, the more unstable the rathotenbes. The axial gradient term
actually causes the rathole to be more stable loyedsing the effective gravitational
forces acting on the rathole.

Original Jenike Rathole Curve
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Figure 5. Jenike G factor as a function of internal frictiomngle (g) at various
dimensionless gas pressure gradients (A)
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Figure 6. Jenike G factor as a function of dimensitess gas pressure gradient (A) at
several internal friction angleg @) between 3&and 60

Knowledge of the pressure gradients in a bin isiireq to compute an estimate to the
critical rathole dimension. In reality, these gesds are functions of spatial coordinates.
This is especially true of the radial pressure gmatd However, an estimate of this radial
pressure gradient is obtained by assuming the gessyre field can be approximated
from the solution of a steady state Laplace eqoadiescribing permeable materials. If
the gas is incompressible, the governing equasiaescribed by Eq. 27.

0°P=0 (27)
If the gas is subject to isothermal compressioen thq. 28 applies.
0°P? =0 (28)

For the purposes of this paper, Eq. 27 will be us#ddthe pressure gradient in the z-
direction is constant and the pressure gradietiie®-direction is small, then Eq. 27 can
be expressed simply as a function of the radiatdioate resulting in Eq. 29

lG—(r B‘ij -0 (29)

0
r or or

Normally the gas injection devices used to prevatitoles are mounted at the bin wall
surface. This can be approximated by a consta#tspre boundary condition at the bin
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wall. The pressure at the rathole surface equelsatmospheric pressure. Therefore, Eq.
29 is subject to two constant pressure boundargitions given in Eg. 30 and Eq. 31.

P=P,, +AP at r =R (30)

atm

P=P

atm

at r=R (31)

This results in an analytical solution for the gasssure as a function of radial position
(Eq. 32). That solution will yield an equation ttye radial gas pressure gradient (Eqg. 33)
showing an increase in the pressure gradient atthele surface.

In(rj—ln[ ' J In(rj
P = Ro Rwall EPatm + RO AP (32)

)

R @)
r r [ﬂn( |%/\/all J
Ro

This can be combined with the definition of the dimionless radial coordinage) given

in Eq. 6 and substituted into the dimensionlessqunee gradient term (A) found in Eq. 19
to yield a new dimensionless pressure gradient témat depends on the spatial
coordinate and the size of the rathole relativieitodiameter (Eq. 34).

on AP

Dwall -D

,71/2 3 Do D]n Dwall
Dwall - Do Do

[¢]

A(n,D,,D,) = (34)

oP

E vy,

The new A-value can be used in Eq. 18 to yield w selution to the rathole equations
that incorporates a variable radial pressure gradidhe solution of this equation can
then be used in the standard rathole equation. omhedifference is that the right side of
Eq. 26 now depends on the critical rathole diamatel requires an iterative solution to
compute the rathole dimension (Eg. 35).
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Figure 7 shows the new G-function for the caseroirdernal angle of friction of 40
degrees as a function of the ratiQ,iJD, and the overall average gas pressure gradient.
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Figure 7. Jenike G-factors for an internal friabn angle (@) of 40E as a function of
gas pressure gradient at various ratios of bin diatar (D) to critical
rathole diameten(D,), Dwai/Do

The last piece of information required to compie ¢ritical rathole condition in aerated
material is an estimate of the unconfined yieldergjth at aerated conditions and
evaluated at solids contact stresses in the praagpspment. As indicated previously,
researchers have developed testers that measwse dleeated cohesive properties as a
function of solids contact stresses. These adiffidey functions can be used to estimate
the aerated unconfined yield strength needed fr rthole analysis. However, the
solids stress in the aerated equipment must be kriovdetermine the critical strength
value for the rathole analysis. A Janssen anabfseéscylinder with gas effects could be
used to estimate the solid contact stresses ilv.a Sionsider a differential slice of bulk
material in a silo (Figure 8).
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Figure 8. Janssen analysis on aerated material

The forces acting on this differential slice inaudhe solids contact stresses, gas
pressures, wall friction, and weight of the matew#hin the slice. A force balance on
this differential element results in differentiad.E36.

oP
o, =yly, _E (36)

do, N 4K dan@,)
dz D

If the gradient in the axial direction is nearlynstant, this differential equation can be
integrated subject to a zero stress boundary dondit the top material surface to yield
Eq. 37 describing the variation of stress as atfanof axial distance from the top of the
silo.

(V a ZZJ“; [El_ex{_ngj (37)

T Han(g, D

This stress level could be evaluated at an axisitipo (z) equal to the height of the silo
to determine an estimate of the solids contacsstfer evaluation of the critical rathole
diameter in silo geometries. This equation for #wdid stress profile in the axial
direction assumes that the gas pressure profliagar along the height of the silo. For
conditions where the axial gas pressure gradiemtsavith time, the most positive axial
gas pressure gradient should be used to producentine conservative solids contact
stress for rathole calculations. Eq. 37 should betused in situations where the gas
pressure gradient varies significantly with axiaspion. It should also be noted that gas
pressure gradients in excess of the unit weighsitdewill predict negative solids contact
stresses. If this situation occurs, the gas presgtadient is large enough to cause
fluidization of the bulk material provided it ise flowing, or to develop channels with
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cohesive materials. In either case, the operatiode deviates from the homogenous
contact bed conditions inherent in the Jansensstrelsl assumptions. The solids contact
stress should be artificially set equal to zerongldghe length of the rathole. The
procedure for computing the critical rathole dimensin aerated equipment is as
follows:

» Estimate the axial gas pressure in the silo.

» Estimate the maximum solids contact stress in tleevgith this gas pressure
gradient. An accurate approximation to these séewill require solving both
the equations of motion for the gas and solid alit the continuity equations.
A Janssen analysis with gas pressure gradient teraysprovide an estimate of
the critical stress level in the bin.

» Estimate the radial gas pressure gradient in tbhensar the rathole surface.

» Estimate the strength of the bulk material at treximum value of the aerated
solids contact stress using the results of theegdrength test.

» Estimate the @pA) function from Figure 4 or 6 using the axial andiahd
estimates of the gas pressure gradients. (A)asdimensionless gas pressure
gradient term which includes the axial and radésd gressure gradients.

» Use the above equations to compute the criticabtatdiameter for the particular
geometry.

A numerical example may help to illustrate thisqadure. Consider the simple case
where the local gas pressure gradients are appabeiynconstant. Please note that this
condition may not be the exact condition in aerdied. Actual pressure gradients will
depend on the position in the silo. Suppose tmelitions and flow properties given in
Table | apply to the silo.

Table | — Flow properties and conditions for rath®icalculation example

Property or Aeration Condition Numerical Value
Bulk density(y) 960 kg/m?®
Radial gas pressure gradi¢htP/Mr), (MP/Mr /yg =0.4) 3.76 kPa/m
Axial gas pressure gradietfMP/Mz), (MP/Mrz / y g = 0.05) 0.47 kPa/m
Internal friction angl€@) assumed to be constant and not a
function of gas pressure gradient or solid cond&retss 40 degrees
Wall friction angle on silo wal{qy) 20 degrees
Silo Diameter (D) 5 meters
Silo Height (2) 15 meters
Silo Janssen K-ratio 0.4

One of the important conclusions of previous woodkel by Barletta [4], Johanson and
Barletta [5], and Kline et. al. [6] is that the wnéined yield strength does not change
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much if the pressure gradient is below some ctitiedue near the fluidization limit.
This implies that cohesive flow properties in stlghaerated conditions could be
approximated by the measured flow properties inaemated conditions. However, this
is not true for conditions near fluidization andcanditions in converging conical funnel
flow geometries. Thus, for the purposes of thianegle, the influence of aeration on the
critical rathole dimension in cylindrical geomesiand pressure gradients less than those
required for fluidization will be investigated. @lprocedure could be applied to more
complex situations but the additional complexitywebcloud the clarity of this example.
Suppose, for the sake of example, that the aeratednfined yield strength could be
expressed as a function of major principal stressdbed in Figure 9.

20

15

10

Unconfined Yield Stress fc (KPa)

O g o 2 o & 2 2 2 2 0 2 2 2 g A 2 2 2 2 0 2 2 2 2 & o 2 2 o & 2 2 2 2 & 2 2 2 2

0 10 20 30 40 50 60 70 80
Major Principal Stress o, (KPa)

Figure 9.  Flow function of aerated material fagxample rathole calculations

The first step in the procedure above is to estntla solids stress in the silo using Eq
37. This analysis suggests that the flow properfer rathole analysis should be
evaluated at a stress of 63.4 kPa. It is impotapbint out that this stress is an estimate
of the largest major principal stress in the sNerothe storage and filling history for the
particular silo. This aerated stress would applythe case where aeration was used on
the silo during filling to keep material in a floba condition. It would not apply to the
case where the silo was filled and the aeratiortesyswas then turned on in an
intermittent mode. The overall maximum solids stéréor the intermittent or on-demand
gas injection condition would be closer to the m@nated stress conditions. In fact,
processes that use aeration to control the flotyabfibulk materials have observed that
flow problems arise if the material within the sibecomes deaerated just once. These
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cohesive deaerated materials are then very diffitureaerate and result in persistent
rathole problems. It is hoped that this paper Wilp explain some of these industrial
observations.

Once the maximum stress state in the aeratedssidietermined the critical strength for
rathole calculation can be evaluated using the flomction for the particular aeration
condition. In this simple example, the effect nfadl to moderate gas pressure gradient
on the critical rathole dimension are examined @nadflow function that applies is the
non-aerated condition given in Figure 9. This ieplthat at a solids stress level of 63.4
kPa the critical strength value for stable ratHokenation equals 16.1 kPa. The last step
in this simplified calculation of aerated criticadthole dimension is to determine the
dimensionless gas pressure gradient ratio (A) asngby Equation 19 for constant
gradient conditions. This pressure gradient ré&p equals -0.421 for the conditions
given in Table 1. Figure 6 can then be used terdehe the critical rathole factor G used
to compute the critical rathole dimension from Bgqua26. The entire procedure then
yields 3.73 m for the aerated critical rathole dusien. The corresponding critical
rathole dimension for non-aerated conditions i96m» suggesting that the assumed
aeration conditions for this example case will dase the rathole tendency to almost half
the value of the non-aerated rathole dimension.usTrcontrolling the aeration to
conditions in this example bin could significantigduce the size of the active flow
channel needed to overcome stable rathole formatibs important to point out that in
this example the critical rathole dimension for ramrated conditions was greater than
the diameter of the bin. This implies that stepshbe taken to expand the active flow
channel to the full bin diameter to prevent stalihole formation. If aeration is used
then mass flow must only be induced up to the 3n78iameter and partial mass flow
designs with controlled aeration could be usedis Tily produce some cost savings in
the required bin design.

A similar analysis could be done for the case wiga® pressure gradients are a function
of radial position. In this case, equation 34 d$tidoe used for a calculation of the

dimensionless gas pressure gradient (A). In thistson, the A term depends on the

critical rathole diameter and will require iteratiasing equations 34 and 35 to obtain a
solution to the critical rathole diameter.

A parametric study of the influence of pressurelgnats on rathole stability can be done
using the example data in Table 1 and Figure ©ivavghe qualitative behavior including
gas pressure gradient terms in the rathole limisingss state equations. Figure 10 shows
the expected behavior using the example data. rathele reduction factor is found by
dividing the computed rathole dimension from thalgsis above by the standard non-
aerated critical rathole dimension from the Jemilethod. The strength values needed
for this analysis were taken from the example flimmction given in Figure 9. This
figure indicates that rathole stability can deceemsabout 60% of the non-aerated value
depending on the radial and axial pressure graglient
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Figure 10. Rathole reduction factor as a functionf sadial and axial gas pressure
gradient using example parameters given in Tablarid assuming constant
gas pressure gradients and the flow function bet@wjiven in Figure 9

3. Conclusions

The rathole analysis presented in this paper estdhd Jenike analysis to aerated
conditions. The resulting theory predicts a deseda the critical rathole diameter as gas
pressure gradients acting in the negative r-dmactincrease. This is intuitively
reasonable since the support of ratholes originiatdbe z-direction. Normal stresses
perpendicular to this direction can provide addidibbody forces required to fail these
circumferential cohesive arches (i.e. ratholes)oweler, increasing the gas pressure
gradient in the z-direction will increase the sliibiof the rathole. This occurs because
the upward acting axial gas pressure gradient ghigrtsupports the material weight
making the material behave as if it were lighteanttexpected. If the cohesion is the
same then lighter material will produce smallelidskontact stresses and result in less
stress available to break or destabilize rathol€se net result is to create more stable
ratholes with axial gas counter-flow. Flow aid oe¢ designed to maximize radial gas
pressure gradients may overcome rathole problemddad they are placed close to the
rathole free surface. This paper provides somkénmrery theoretical guidance in using
aeration devices to overcome stable rathole foonati process equipment. It is hoped
that this work can be refined through Experimentainfirmation and industrial
observation of rathole stability which will be agect of future work.
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4. Nomenclature

A Dimensionless pressure gradient body force ratio.

D Bin diameter as a function of axial position

Do Critical rathole diameter

Dwail Cylindrical bin diameter

fc Unconfined yield strength

G(@pA) Critical rathole G factor

H The projected linear yield locus normal tensilessr

K Janssen k-value ratio of stress normal to the wwahe vertical stress in the
axial direction. Typically equals 0.4

P Gas pressure

Patm Gas pressure at rathole surface

AP Difference between gas pressure at bin wall anggessure at rathole surface

r Radial position

Ro Radial position of rathole surface

Rwall Radial position of bin wall

Y Powder bulk density

n Dimensionless radial position

Nmax Maximum value of the dimensionless radius that pitiduce a stable plastic
field

@ Internal friction angle

QO Wall friction angle

Oy Normal stress on the plane perpendicular to thiarddection in a cylindrical
coordinate system

Op Normal stress on the plane perpendicular ta thelirection in a cylindrical
coordinate system

o, Normal stress on the plane perpendicular to thal akiection in a cylindrical
coordinate system

o Mean limit stress

01 Major principal stress

O3 Minor principal stress

Oy Average vertical stress for Janssen analysis

Oh Stress normal to cylinder wall for Janssen analysis

Trz Shear stress on the plane perpendicular to thalrdidection acting in the
axial direction in a cylindrical coordinate system

Tro Shear stress on the plane perpendicular to thalrdidection acting in the
B—direction in a cylindrical coordinate system

Toz Shear stress on the plane perpendicular t@-tdeection acting in the axial
direction in a cylindrical coordinate system

Tw Shear stress on the wall for Janssen analysis

() Angle between the minor principal stress and theardinate direction
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