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Abstract: 
 
Forty years ago Jenike and Johanson developed the flow-no-flow equations used to 
predict stability of bulk solid structures in silos and hoppers.  These equations were 
developed into a theory that has been used to design process equipment to handle 
cohesive materials.  The basis of the theory is a limiting stress state analysis of a bulk 
material forming a cylindrical pipe (rathole) around or an arch across the hopper outlet.  
Reliable process operation requires that these two cohesive obstructions be avoided to 
achieve proper flow of bulk materials through process equipment.  Today, industry uses a 
variety of flow aid devices to overcome these stable flow structures.  One such device is 
aeration pads which are used to maintain fluidization of fine powders and decrease 
cohesive behavior of bulk materials.  Alternatively, air blasters can inject a given quantity 
of gas into the bulk material creating large transient gas pressure gradients that may 
destroy these cohesive structures in process equipment.  It is important to note that air 
blasters may destroy cohesive structures provided they are placed in close enough 
proximity to the stable rathole and with sufficient frequency along the axis of the bin or 
around the bin perimeter.  Although these aeration techniques work, a full understanding 
of the reason is lacking.  Currently, both the placement and required number of these 
flow aid devices are based on practical experience and not sound theoretical principles.  
This paper addresses this knowledge void by adding the gas pressure gradient terms to 
the rathole stability analysis performed by Jenike, thus extending the flow-no-flow 
rathole analysis to aerated conditions.   
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1. Introduction 
 
Processing and handling of fine materials is often difficult.  These materials sometimes 
behave as cohesive masses.  However, the addition of air often creates a condition 
wherein bulk materials exhibit less cohesive tendencies.  One example of using aeration 
to overcome cohesive flow problems is the use of air pads in flat-bottom ash silos to keep 
material in a flowable condition.  Standard rules of thumb suggest that a minimum of 
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15% of the silo bottom should be covered with air pads to maintain ash in a flowable 
state.  Air flow should be used during filling and maintained during storage.  Since a 
sound theory of cohesive aerated behavior does not exist, current bulk solids 
practitioners’ err on the side of safety and often recommend that the entire bottom be 
fluidized with the hope that more aeration will provide some safety margin for design. 
The placement of these pads is more art than science and the amount of air injected is 
empirical and based on past experience.  If the injection system fails, the material within 
the silo looses entrained gas and cohesive ratholes result.  The relationship between 
rathole stability and degree of aeration is not well understood.  This paper addresses a 
theoretical approach for stable rathole formation in aerated hoppers and bins.  It is an 
extension of the critical rathole stability criteria initially proposed by Jenike [1].   
 
Two conditions that must be satisfied for trouble free process operations using powder 
materials are that the outlet must be large enough to overcome cohesive arching of bulk 
materials and that the active flow channel must be larger than the critical rathole 
dimension.  The Jenike arching criteria equations [1] [2] are often used to compute the 
arching tendency.  Alternatively, the arching index approach [3] is used to compute 
critical arching dimensions.  However, reliable flow of bulk material from process 
equipment also requires that the induced flow channel be large enough to prevent the 
formation of stable ratholes.  Jenike also developed a limiting stress state analysis for 
prediction of critical rathole diameters in funnel flow bins.  This method has been used 
with moderate success over the last 40 years to provide a conservative estimate of the 
critical rathole diameter. However it does have some limitations.   This paper attempts to 
address one of these limitations.  
 
Both the arching and rathole conditions must be overcome to assure reliable flow.  This 
paper focuses on only the rathole tendency of bulk powders and deals directly with the 
influence of aeration on the ability of a powder material to form a stable rathole.  It will 
leave the formation of arches in aerated material to some future work.  It should be noted 
that, quite often, in funnel flow bins the critical rathole dimension is the controlling factor 
in successful handling system operation.  The rathole flow-no-flow criteria states that the 
active flow channel induced in the material must be greater than the critical rathole 
dimension for reliable flow to occur.   The question then arises as to how this critical 
diameter changes during powder aeration.  Two things are required to determine the 
effect of aeration on cohesive flow obstructions.  The relationship between aeration and 
cohesive flow properties must be established and the stability of cohesive structures 
under aeration conditions must be understood. 
 
Recent work by Barletta [4], Johanson and Barletta [5], and Kline et. al. [6] makes 
measurement of unconfined yield strength as a function of aeration possible.  These 
aerated flow property measurements can be used to predict critical rathole dimensions for 
aerated process equipment.   Their work suggests there is a relationship between aeration 
and unconfined yield strength.  However, this effect does not become a dominant issue 
until the gas pressure gradient acting in the powder approaches the weight density of the 
bulk powder.   
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From a theoretical point of view Hill and Cox [7] analyzed the limiting stability rathole 
equations but did not include gas pressure terms.  There is limited discussion in their 
paper about the validity of their new critical rathole dimension predictions and they 
neglected to add the gas pressure gradient terms.  Hence, their analysis can not handle 
aerated materials.  The following paper addresses the rathole stability in aerated 
conditions and presents an analysis similar to the one proposed by Jenike, except it 
includes gas pressure gradient terms.    
 
2. Derivation of the critical rathole equations 
 
The rathole derivation as defined by Jenike is a critical slope stability calculation and 
assumes a perfectly plastic limit analysis.  The governing equation is called the 
equilibrium equation and is simply the equation of motion with the acceleration terms 
omitted (see Eq. 1). 
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This results in the following vector component equations when expressed in cylindrical 
coordinates see Figure 1.   
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Figure 1. Definition of stress components 
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Normal stress in the θ-direction is assumed to equal the major principal stress in 
accordance with the Har Von Karman hypothesis, which states that the hoop stress in 
bulk material is equal to either the major or minor principal stress.  This assumption 
implies that the shear stresses τrθ and τθz equal zero.  The critical rathole dimension for a 
given piece of process equipment should depend on the strength evaluated at the greatest 
solids contact stress in the equipment.  Janssen [8] analyzed the stresses in cylindrical 
silos and found an asymptotic relationship for the stress as a function of the axial 
coordinate.  In a silo, the largest solids stress occurs far below the top material surface.  
At this location, the Janssen stress profile produces a condition where the normal stress 
σz is constant with bed depth.  Hence, the terms Μσz/Μz and Μτrz/Μz equal zero.  
These assumptions result in the simplified Eq. 4 and Eq. 5.  
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These equations are transformed using the scale variable proposed in the original rathole 
analysis.  This transformation relates the radial position to a new variable η as given by 
Eq. 6 and Figure. 2. 
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Figure 2.      Rathole schematic 



             7010 NW 23rd Way, Suite A                   Copyright © 2003                                               
                                                                                                       Gainesville, FL  32653 

 

oDr ⋅⋅= 2/1

2

1 η           (6) 

 
The new rathole stability equations become the following:   
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They are similar to the equations originally derived by Jenike, but include gas pressure 
gradient terms.  Eq. 8 can be integrated directly, subject to the boundary condition of zero 
shear stress at the rathole surface and nearly constant gas pressure gradient in the axial 
direction, to yield Eq. 9 describing the shear stress as a function of radial position away 
from the rathole surface.   
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Eq. 7 and Eq. 8 can not be solved directly, since the number of unknown variables 
exceeds the number of vector component equations.  A constitutive equation relating the 
normal stresses σθ and σr is required in order to provide closure to this system of 
equations.   
 
The concept of a perfect plastic material provides the necessary closure equations.  When 
stress levels reach a critical value, yield will occur.  The perfectly plastic assumption uses 
the stress state at the point of yield as the stress state for all plastic flow conditions.  
Obviously, this only applies to the condition of incipient flow or yield.  Such an 
assumption can not hope to predict flow behavior between the incipient flow and 
continual deformation conditions.  Consequently, the model derived from these equations 
may predict the incipient failure of a rathole, but will not give any information describing 
the flow after initiation.  This limitation of the theory is acceptable for this rathole 
stability analysis since the goal of this work is to predict the incipient failure of a rathole.  
The yield locus then becomes the constitutive equation required for closure of the 
equation of motion. The yield locus is the collection of shear stress (τ) normal stress 
points (σ) that describe incipient failure of a bulk material subjected to a prescribed 
compaction stress.  Figure 3 shows a typical yield locus.  The bold line represents the 
collection of all stress states that will result in yield of the bulk material.  This line 
terminates at a stress condition given by the largest Mohr circle.  All failure conditions on 
the yield locus arise from subjecting the material to the compaction stress state described 
by this termination Mohr circle and then shearing the preconditioned bulk material at a 
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lower stress state.  There is an unique yield locus for each compaction stress state.  A 
linear approximation to this yield locus provides the constitutive equation required for 
closure of Eqs. 7 and 8.  This relationship allows the stress tensor components to be 
expressed as a function of the mean stress.  It is also a function of the direction between 
the major principal stress and coordinate axis.    
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Figure 3. Definition of limiting stress state for rathole analysis 
 
This definition is identical to the limiting state constitutive equation used by Jenike in his 
original rathole analysis.  It is important to note that the average stress defined in this 
figure is measured from the apex of the yield locus and not from the origin.  This results 
in Eqs. 10 through 13 for the stress equations. 
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Eq. 9 can be substituted back into Eq. 8 to yield a relationship between η and τrz.   
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Eq. 14 can then be combined with the Mohr stress yield conditions to provide a 
relationship between the mean stress (σ) and principal stress direction angle (ω).  
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Eq. 15 provides a means of relating mean stress to the principal stress direction.  It arises 
from the solution of the axial equation of motion subject to the simple boundary 
conditions and assumptions outlined above.  The radial component of the equation of 
motion can also be expressed as a function of mean stress (σ) and principal stress 
direction (ω).  This can be done by substituting Eqs. 10 through 13 into Eq. 7 to yield Eq. 
16.  
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The right side of Eq. 16 can be modified by using the integrated shear stress Eq. 9 and the 
Mohr circle definition for the shear stress in Eq. 12.   This yields Eq. 17 and eliminates 
the mean stress term from the right side of Eq. 16.  This allows complete separation of 
the mean stress and principle stress direction derivatives and leads to Eq. 18, which 
describes the change of principle stress direction (ω) with respect to the dimensionless 
radial coordinate (η).     
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This differential equation must be bounded within the limits of integration to produce 
physically realizable solutions.  Therefore, an analysis of the extreme points of this 
equation will yield limits on the principal stress direction angle.  The denominator can 
become unbounded if sin(φ) equals cos(2ω).  This results in Eq. 20 describing the 
maximum limit of principal stress direction angle.   
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The numerator must also vanish at this value of ω to maintain a bounded solution.  This 
yields a relationship between the dimensionless coordinate (η), dimensionless gas 
pressure gradient term (A), and� internal friction angle (φ) (Eq. 21).   The dimensionless 
coordinate ηmax is the largest possible radial position that can create a plastic stress field 
given a rathole diameter of Do.   
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The maximum radius of the plastic field is then given by Eq. 22. 
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Now at the surface of the rathole, η approaches 1, ω approaches 0, and σ1 approaches the 
unconfined yield strength fc.  This implies the following relationship between unconfined 
yield strength (fc) and average stress level (σ).   
 

cf=⋅⋅ )sin(2 φσ                             (23) 
 
However, from the solution of the shear stress differential equation average stress can be 
related to the rathole diameter (Do). 
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Eq. 23 and Eq. 24 can be combined to yield a relationship between the rathole diameter 
and the direction of major principal stress near the rathole surface (Eq. 25).   
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L’Hospital rule must be used to evaluate this limit, resulting in the following equation for 
the rathole diameter.   
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It is obvious from this equation that the derivative of the major principal stress direction, 
with respect to the dimensionless radial coordinate evaluated at the surface of the rathole 
(η=1), is required to determine a maximum limit to the critical rathole diameter.  The 
G(φ,A) term defined above is four times the derivative of the principal stress direction 
with respect to the dimensionless radial coordinate (η).  It is similar to the G(φ) term 
derived by Jenike, but includes gas pressure gradient terms.  This derivative can be 
obtained by integrating Eq. 18 subject to the boundary condition η=ηmax at 
ω=π/4 − φ/2.  Because of the complexity of the differential equation, integration must be 
done numerically.  The integration proceeds backwards from the boundary condition at 
ηmax and terminates at η=1.  The derivative of the principal stress direction angle (ω) 
with respect to dimensionless radial coordinate (η) evaluated at η=1 is then used to 
compute the critical rathole diameter.  As a first approximation, gas pressure gradient 
terms are assumed constant.  This is not strictly true and there will be some variation with 
both radial and axial position in the bin.  A more accurate solution should involve the 
combined numerical solution of the limiting rathole equations along with the equations of 
motion describing gas flow through powder.  However, the analysis provided in this 
paper can provide a first approximation to rathole stability in aerated process equipment.  
Figure 4 shows a typical solution to the differential equation.   

 
Figure 4.      Typical solution for aerated rathole equation 
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This integration can be repeated for various values of (A) and internal angle of friction 
(φ) resulting in a new relationship for the G(φ,Α) function that includes gas pressure 
gradient terms (Figures 5 and 6).  It is important to note that the radial component of the 
gas pressure gradient is responsible for rathole destabilization.  The larger this gas 
pressure gradient, the more unstable the rathole becomes.  The axial gradient term 
actually causes the rathole to be more stable by decreasing the effective gravitational 
forces acting on the rathole.      

 
Figure 5.    Jenike G factor as a function of internal friction angle (φ) φ) φ) φ) at various 

dimensionless gas pressure gradients (A)  
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Figure 6. Jenike G factor as a function of dimensionless gas pressure gradient (A) at 
several internal friction angles (φ) φ) φ) φ) between 35ΕΕΕΕ and 60ΕΕΕΕ 

 
Knowledge of the pressure gradients in a bin is required to compute an estimate to the 
critical rathole dimension.  In reality, these gradients are functions of spatial coordinates.  
This is especially true of the radial pressure gradient.  However, an estimate of this radial 
pressure gradient is obtained by assuming the gas pressure field can be approximated 
from the solution of a steady state Laplace equation describing permeable materials.   If 
the gas is incompressible, the governing equation is described by Eq. 27. 
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If the gas is subject to isothermal compression, then Eq. 28 applies. 
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For the purposes of this paper, Eq. 27 will be used.  If the pressure gradient in the z-
direction is constant and the pressure gradient in the θ-direction is small, then Eq. 27 can 
be expressed simply as a function of the radial coordinate resulting in Eq. 29. 
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Normally the gas injection devices used to prevent ratholes are mounted at the bin wall 
surface.  This can be approximated by a constant pressure boundary condition at the bin 
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wall.  The pressure at the rathole surface equals the atmospheric pressure.  Therefore, Eq. 
29 is subject to two constant pressure boundary conditions given in Eq. 30 and Eq. 31. 
 

PPP atm ∆+=   at       wallRr =   (30) 
 

atmPP =   at       oRr =   (31) 
 
This results in an analytical solution for the gas pressure as a function of radial position 
(Eq. 32).  That solution will yield an equation for the radial gas pressure gradient (Eq. 33) 
showing an increase in the pressure gradient at the rathole surface.       
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This can be combined with the definition of the dimensionless radial coordinate (η) given 
in Eq. 6 and substituted into the dimensionless pressure gradient term (A) found in Eq. 19 
to yield a new dimensionless pressure gradient term that depends on the spatial 
coordinate and the size of the rathole relative to bin diameter (Eq. 34).   
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The new A-value can be used in Eq. 18 to yield a new solution to the rathole equations 
that incorporates a variable radial pressure gradient.  The solution of this equation can 
then be used in the standard rathole equation.  The only difference is that the right side of 
Eq. 26 now depends on the critical rathole diameter and requires an iterative solution to 
compute the rathole dimension (Eq. 35).   
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Figure 7 shows the new G-function for the case of an internal angle of friction of 40 
degrees as a function of the ratio Dwall/Do and the overall average gas pressure gradient.   

 
Figure 7.    Jenike G-factors for an internal friction angle (φ) φ) φ) φ) of 40ΕΕΕΕ as a function of 

gas pressure gradient at various ratios of bin diameter (Dwall) to critical 
rathole diameter (Do),  Dwall/Do 

 
The last piece of information required to compute the critical rathole condition in aerated 
material is an estimate of the unconfined yield strength at aerated conditions and 
evaluated at solids contact stresses in the process equipment.  As indicated previously, 
researchers have developed testers that measure these aerated cohesive properties as a 
function of solids contact stresses.   These aerated flow functions can be used to estimate 
the aerated unconfined yield strength needed for this rathole analysis.  However, the 
solids stress in the aerated equipment must be known to determine the critical strength 
value for the rathole analysis.  A Janssen analysis of a cylinder with gas effects could be 
used to estimate the solid contact stresses in a silo.  Consider a differential slice of bulk 
material in a silo (Figure 8).   
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Figure 8.     Janssen analysis on aerated material 

 
The forces acting on this differential slice include the solids contact stresses, gas 
pressures, wall friction, and weight of the material within the slice.  A force balance on 
this differential element results in differential Eq. 36.   
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If the gradient in the axial direction is nearly constant, this differential equation can be 
integrated subject to a zero stress boundary condition at the top material surface to yield 
Eq. 37 describing the variation of stress as a function of axial distance from the top of the 
silo.   
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This stress level could be evaluated at an axial position (z) equal to the height of the silo 
to determine an estimate of the solids contact stress for evaluation of the critical rathole 
diameter in silo geometries.  This equation for the solid stress profile in the axial 
direction assumes that the gas pressure profile is linear along the height of the silo.  For 
conditions where the axial gas pressure gradient varies with time, the most positive axial 
gas pressure gradient should be used to produce the more conservative solids contact 
stress for rathole calculations.  Eq. 37 should not be used in situations where the gas 
pressure gradient varies significantly with axial position.  It should also be noted that gas 
pressure gradients in excess of the unit weight density will predict negative solids contact 
stresses.  If this situation occurs, the gas pressure gradient is large enough to cause 
fluidization of the bulk material provided it is free flowing, or to develop channels with 
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cohesive materials.  In either case, the operation mode deviates from the homogenous 
contact bed conditions inherent in the Jansen stress field assumptions.  The solids contact 
stress should be artificially set equal to zero along the length of the rathole.  The 
procedure for computing the critical rathole dimension in aerated equipment is as 
follows: 
 

• Estimate the axial gas pressure in the silo.   
• Estimate the maximum solids contact stress in the silo with this gas pressure 

gradient.  An accurate approximation to these stresses will require solving both 
the equations of motion for the gas and solid along with the continuity equations.  
A Janssen analysis with gas pressure gradient terms may provide an estimate of 
the critical stress level in the bin. 

• Estimate the radial gas pressure gradient in the silo near the rathole surface. 
• Estimate the strength of the bulk material at the maximum value of the aerated 

solids contact stress using the results of the aerated strength test. 
• Estimate the G(φ,Α) function from Figure 4 or 6 using the axial and radial 

estimates of the gas pressure gradients.  (A) is the dimensionless gas pressure 
gradient term which includes the axial and radial gas pressure gradients.     

• Use the above equations to compute the critical rathole diameter for the particular 
geometry. 

 
A numerical example may help to illustrate this procedure.  Consider the simple case 
where the local gas pressure gradients are approximately constant.  Please note that this 
condition may not be the exact condition in aerated bins.  Actual pressure gradients will 
depend on the position in the silo.  Suppose the conditions and flow properties given in 
Table I apply to the silo. 
 

Table I – Flow properties and conditions for rathole calculation example 
 

Property or Aeration Condition Numerical Value 

Bulk density (γ)  960 kg/m3 

Radial gas pressure gradient (ΜP/Μr), (ΜP/Μr  / γ g = 0.4) 3.76 kPa/m 

Axial gas pressure gradient  (ΜP/Μz), (ΜP/Μrz / γ g = 0.05) 0.47 kPa/m 

Internal friction angle (φ) assumed to be constant and not a 
function of gas pressure gradient or solid contact stress 

40 degrees 

Wall friction angle on silo wall (φw) 20 degrees 

Silo Diameter (D) 5 meters 

Silo Height (z)  15 meters 

Silo Janssen K-ratio 0.4 
   
One of the important conclusions of previous work done by Barletta [4], Johanson and 
Barletta [5], and Kline et. al. [6] is that the unconfined yield strength does not change 
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much if the pressure gradient is below some critical value near the fluidization limit.  
This implies that cohesive flow properties in slightly aerated conditions could be 
approximated by the measured flow properties in non-aerated conditions.  However, this 
is not true for conditions near fluidization and at conditions in converging conical funnel 
flow geometries.  Thus, for the purposes of this example, the influence of aeration on the 
critical rathole dimension in cylindrical geometries and pressure gradients less than those 
required for fluidization will be investigated.  The procedure could be applied to more 
complex situations but the additional complexity would cloud the clarity of this example.   
Suppose, for the sake of example, that the aerated unconfined yield strength could be 
expressed as a function of major principal stress described in Figure 9.   
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Figure 9.     Flow function of aerated material for example rathole calculations 
 
The first step in the procedure above is to estimate the solids stress in the silo using Eq 
37.  This analysis suggests that the flow properties for rathole analysis should be 
evaluated at a stress of 63.4 kPa.  It is important to point out that this stress is an estimate 
of the largest major principal stress in the silo over the storage and filling history for the 
particular silo.  This aerated stress would apply for the case where aeration was used on 
the silo during filling to keep material in a flowable condition.  It would not apply to the 
case where the silo was filled and the aeration system was then turned on in an 
intermittent mode.  The overall maximum solids stress for the intermittent or on-demand 
gas injection condition would be closer to the non-aerated stress conditions.   In fact, 
processes that use aeration to control the flowablity of bulk materials have observed that 
flow problems arise if the material within the silo becomes deaerated just once.  These 
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cohesive deaerated materials are then very difficult to reaerate and result in persistent 
rathole problems.  It is hoped that this paper will help explain some of these industrial 
observations. 
 
Once the maximum stress state in the aerated silo is determined the critical strength for 
rathole calculation can be evaluated using the flow function for the particular aeration 
condition.  In this simple example, the effect of small to moderate gas pressure gradient 
on the critical rathole dimension are examined and the flow function that applies is the 
non-aerated condition given in Figure 9.  This implies that at a solids stress level of 63.4 
kPa the critical strength value for stable rathole formation equals 16.1 kPa.  The last step 
in this simplified calculation of aerated critical rathole dimension is to determine the 
dimensionless gas pressure gradient ratio (A) as given by Equation 19 for constant 
gradient conditions.  This pressure gradient ratio (A) equals -0.421 for the conditions 
given in Table 1.  Figure 6 can then be used to determine the critical rathole factor G used 
to compute the critical rathole dimension from Equation 26.  The entire procedure then 
yields 3.73 m for the aerated critical rathole dimension.  The corresponding critical 
rathole dimension for non-aerated conditions is 6.59 m suggesting that the assumed 
aeration conditions for this example case will decrease the rathole tendency to almost half 
the value of the non-aerated rathole dimension.  Thus, controlling the aeration to 
conditions in this example bin could significantly reduce the size of the active flow 
channel needed to overcome stable rathole formation.   It is important to point out that in 
this example the critical rathole dimension for non-aerated conditions was greater than 
the diameter of the bin.  This implies that steps must be taken to expand the active flow 
channel to the full bin diameter to prevent stable rathole formation.  If aeration is used 
then mass flow must only be induced up to the 3.73 m diameter and partial mass flow 
designs with controlled aeration could be used.  This may produce some cost savings in 
the required bin design.   
 
A similar analysis could be done for the case where gas pressure gradients are a function 
of radial position.  In this case, equation 34 should be used for a calculation of the 
dimensionless gas pressure gradient (A).  In this situation, the A term depends on the 
critical rathole diameter and will require iteration using equations 34 and 35 to obtain a 
solution to the critical rathole diameter.   
 
A parametric study of the influence of pressure gradients on rathole stability can be done 
using the example data in Table 1 and Figure 9 to show the qualitative behavior including 
gas pressure gradient terms in the rathole limiting stress state equations.  Figure 10 shows 
the expected behavior using the example data.  The rathole reduction factor is found by 
dividing the computed rathole dimension from the analysis above by the standard non-
aerated critical rathole dimension from the Jenike method.  The strength values needed 
for this analysis were taken from the example flow function given in Figure 9.  This 
figure indicates that rathole stability can decrease to about 60% of the non-aerated value 
depending on the radial and axial pressure gradients.   
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Figure 10. Rathole reduction factor as a function of radial and axial gas pressure 

gradient using example parameters given in Table 1 and assuming constant 
gas pressure gradients and the flow function behavior given in Figure 9 

 
 
 
3. Conclusions 
 
The rathole analysis presented in this paper extends the Jenike analysis to aerated 
conditions.  The resulting theory predicts a decrease in the critical rathole diameter as gas 
pressure gradients acting in the negative r-direction increase.  This is intuitively 
reasonable since the support of ratholes originates in the z-direction.  Normal stresses 
perpendicular to this direction can provide additional body forces required to fail these 
circumferential cohesive arches (i.e. ratholes).  However, increasing the gas pressure 
gradient in the z-direction will increase the stability of the rathole.  This occurs because 
the upward acting axial gas pressure gradient partially supports the material weight 
making the material behave as if it were lighter than expected.  If the cohesion is the 
same then lighter material will produce smaller solids contact stresses and result in less 
stress available to break or destabilize ratholes.  The net result is to create more stable 
ratholes with axial gas counter-flow.  Flow aid devices designed to maximize radial gas 
pressure gradients may overcome rathole problems provided they are placed close to the 
rathole free surface.  This paper provides some preliminary theoretical guidance in using 
aeration devices to overcome stable rathole formation in process equipment.  It is hoped 
that this work can be refined through Experimental confirmation and industrial 
observation of rathole stability which will be a subject of future work.   
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4. Nomenclature 
 
A Dimensionless pressure gradient body force ratio. 
D Bin diameter as a function of axial position 
Do  Critical rathole diameter 
Dwall  Cylindrical bin diameter 
fc Unconfined yield strength 
G(φ,Α) Critical rathole G factor 
H The projected linear yield locus normal tensile stress 
K Janssen k-value ratio of stress normal to the wall to the vertical stress in the 

axial direction.  Typically equals 0.4 
P Gas pressure 
Patm Gas pressure at rathole surface 
∆P Difference between gas pressure at bin wall and gas pressure at rathole surface 
r Radial position 
Ro  Radial position of rathole surface 
Rwall  Radial position of bin wall 
γ   Powder bulk density 
η  Dimensionless radial position 
ηmax Maximum value of the dimensionless radius that will produce a stable plastic 

field 
φ  Internal friction angle 
φw Wall friction angle 
σr Normal stress on the plane perpendicular to the radial direction in a cylindrical 

coordinate system 
σθ Normal stress on the plane perpendicular to the ��direction in a cylindrical 

coordinate system 
σz Normal stress on the plane perpendicular to the axial direction in a cylindrical 

coordinate system 
σ Mean limit stress 
σ1 Major principal stress 
σ3 Minor principal stress 
σv Average vertical stress for Janssen analysis 
σh Stress normal to cylinder wall for Janssen analysis 
τrz Shear stress on the plane perpendicular to the radial direction acting in the 

axial direction in a cylindrical coordinate system 
τrθ Shear stress on the plane perpendicular to the radial direction acting in the 

θ−direction in a cylindrical coordinate system 
τθz Shear stress on the plane perpendicular to the θ−direction acting in the axial 

direction in a cylindrical coordinate system 
τw Shear stress on the wall for Janssen analysis 
ω  Angle between the minor principal stress and the r-coordinate direction 
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